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Summary. Multiresolution methods provide a means for representing data at mul- 
tiple levels of detail. They are typically based on a hierarchical data organization 
scheme and update rules needeed for data value computation. We use a data orga- 
nization that is based on what we call fi subdivision, where n is the dimension of 
the data set. The main advantage of fi  subdivision, compared to quadtree (n = 2) 
or octree (n = 3) organizations, is that the number of vertices is only doubled in 
each subdivision step instead of multiplied by a factor of 2”, i.e., four or eight, 
respectively. To update data values we use n-variate B-spline wavelets, which yield 
better approximations for each level of detail. We develop a lifting scheme for n = 2 
and n = 3 based on the fi-subdivision scheme. We obtain narrow masks that p r e  
vide a basis for out-of-core techniques as well as view-dependent visualization and 
adaptive, localized refinement. 

1 Introduction 

Multiresolution schemes are used in computer graphics mainly for editing and 
rendering curves and surfaces at multiple levels of resolution. While most ex- 
isting schemes could, in principle, be generalized for higher-dimensional data, 
only a few have been extended to data (or functions) defined over three or 
even higher-dimensional domains. The combined subdivision-wavelet scheme 
we are describing in this paper is driven by the need to represent trivariate 
data (or functions) at multiple resolution levels for scientific visualization. 

Representing volume data hierarchically is important in the context of 
“volume modeling” and visualizing volume data, e.g., scalar or vector fields 
defined over volumetric domains. Visualizing inherently trivariate phenomena 
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often requires one to apply rendering operations to volumetric data - exam- 
ples being volume slicing via a cutting plane, isosurface extraction through 
marching-cubes-like algorithms, and ray casting. The multiresolution approx- 
imation approach we describe in this paper provides an elegant means of hi- 
erarchically organizing volume data, and we can use the resulting hierarchy 
to apply to its various levels volume data visualization methods. 

We combine the @-subdivision hierarchy with update rules using n- 
variate B-spline wavelets to gain an n-dimensional multiresolution data r e p  
resentation. Multiresolution schemes have been studied extensively over the 
past decade. A survey of the main multiresolution approaches, considering 
also topological constraints, is given by Kobbelt [ll]. These approaches can, 
for example, be used for a multiresolution representation of isosurfaces. How- 
ever, when considering (bio-)medical imaging data, for instance, we must 
be able to switch quickly between isosurfaces corresponding to different 
isovalues, and when considering, for example, numerically simulated time- 
dependent hydrodynamics data, we even have to deal with isosurfaces chang- 
ing over time. It is undesirable to store every single isosurface for all possibly 
important isovalues at different resolutions and load them during visualiza- 
tion. Instead, we devise a multiresolution volume data representation. We 
first develop a bivariate B-spline wavelet scheme for fi subdivision and then 
generalize it to a trivariate B-spline wavelet scheme for fi subdivision. We 
have applied our techniques to bivariate as well as volumetric data. 

For large-scale multiresolution representation, one should use regular 
rather than irregular data structures, since grid connectivity is implicit and 
data access simple for regular data. To overcome regular data structures’ 
disadvantage of coarse granularity, we have developed the *subdivision 
scheme we discuss in Section 3. Every @subdivision step only doubles the 
number of vertices, which is a factor of @ in each of the n dimensions. 

When using a wavelet scheme, the data value at a vertex p is updated 
when changing the level of detail, and thus the value varies with varying 
level of detail. On a coarse level, the value represents the value at p itself 
as well as an average value of a certain region around p. This approach 
leads to better approximations on coarser levels. Wavelets based on the fi- 
subdivision scheme unfortunately have the disadvantage of creating over- and 
undershoots. For example, for isosurface extraction (n = 3) this characteristic 
can cause creation of isosurfaces (or isosurface components) that are not 
existent in the full resolution. Therefore, we use n-variate B-spline wavelets, 
which do not create over- and undershoots, and adjust them to the @- 
subdivision scheme. 

&spline wavelets have the property that they do not only influence the 
neighbors of a vertex p. Thus, when using out-of-core techniques to operate 
on or visualize large-scale data, a lot of data must be loaded from external 
memory with low I/O-performance. Furthermore, the adaptivity for view- 
dependent refinement techniques is restricted. Lifting schemes with narrow 
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filters can be used to overcome this problem. We review and generalize the 
lifting scheme from [3] in Section 4. In Sections 5 and 7, we develop a similar 
liftkig scheme for the @-subdivision scheme for n = 2 and n = 3. We provide 
results in Sections 6 and 8. 

2 Related work 

Multiresolution volume representation is based on a three-dimensional hierar- 
chical data organization of irregular or regular type. Irregular data structures, 
see [4,8,7], use non-uniform refinement steps, which makes them highly adap- 
tive. On the other hand, grid information must be stored and data access 
is not straight-forward. Especially for large-scale data, additional memory 
requirements and memory organization needs are a major disadvantage of 
irregular structures. 

For regular data organizations, octrees, see [14, 16, 19, 23, 26, 331; and 
tetrahedral grids, see [19], are common. For regular structures, grid con- 
nectivity is implicit and data is easily and quickly accessed. However, the 
refinement steps have to conform to the topological constraints, which makes 
regular structures less adaptive. To overcome this disadvantage, we use the 
@subdivision scheme, a regular data organization supporting h e r  granu- 
larity. While, for example, an octree refinement step doubles the number of 
vertices in every dimension, which leads to a factor of eight, a @-subdivision 
step only doubles the overall number of vertices. Therefore, @ subdivision 
will, in general, require less vertices than octrees to satisfy specified image 
quality error bounds. Since finer granularity leads to higher adaptivity this 
fact still holds when using adaptive refinement techniques. 

The splitting step of the i/i-subdivision scheme was introduced by Cohen 
and Daubechies [5] for n = 2 and Maubach [17] for arbitrary n. It can be 
described by using triangular as well as quadrilateral meshes (n = 2) or their 
counterparts for higher dimensions. In the following, we will consider the 
quadrilateral case and its generalization. 

The refinement step of the approaches described in [6,21,34] is a longest- 
edge bisection applied to tetrahedral meshes. This step is equivalent to the 
splitting step of the @-subdivision scheme. However, these approaches do 
not represent a full subdivision scheme, since the averaging step is missing. 
Thus, these schemes are restricted to structured-rectilinear grids, where eight 
cuboids share a common vertex, and the cuboids have the same size. The @ 
subdivision scheme also applies to structured-curvilinear grids, where hex& 
hedra of arbitrary shape (but with linear edges) are used instead of cuboids. 
The scheme can even handle extraordinary vertices, see [20]. 

Recently, Velho and Zorin [31] introduced 4-subdivision surfaces (n = 2) 
by adding an averaging step. They showed that the produced surfaces are C4- 
continuous at regular and C'-continuous at extraordinary vertices. (For an 
introduction to subdivision methods, we refer to [32].) 
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The main advantage of wavelet schemes is the fact that they provide a 
means to generate best approximations in a multiresolution hierarchy. Stoll- 
nitz et al. [27l described how to generate wavelets for subdivision schemes. 
However, ii/2-subdivision wavelets can lead to over- and undershoots, see 
Figure 7(b), which are especially disturbing when extracting isosurfaces from 
different levels of approximation. They can even cause topological changes 
of isosurfaces when changing the level of resolution. Therefore, we have de- 
cided to generate B-spline wavelets for the ii/2-subdivision scheme, which 
are known to produce good approximations. (For an introduction to B-spline 
techniques, we refer to [24].) 

The computation of wavelet coefficients at a certain vertex for wavelets 
with good approximation quality like B-spline wavelets is not limited to us- 
ing only adjacent vertices. Localization, however, is strongly desirable when 
we want to apply the wavelet scheme to adaptive refinement and to out-of- 
core visualization techniques. Liftiig schemes as introduced by Sweldens [28] 
decompose wavelet computations into several steps, but they assert narrow 
filters, see Figure 6. Bertram et al. [2, 31 defined a lifting scheme for one- 
and two-dimensional B-spline wavelets using a quadtree organization of the 
V e r t i c e s .  

Wavelets for general dilation matrices go back to Ftiemenschneider and 
Shen [25] who used a box-spline approach. KovaEeviC and Vetterli [13] and, 
more recently, Uytterhoeven [30] and KovaEeviC and Sweldens [12] developed 
lifting schemes that can be applied to ii/2-subdivision data structures. Uyt- 
terhoeven [30] only addressed the two-dimensional case. In [12], the filters 
that produce good approximations are not narrow enough for our purposes. 
On the other hand, the update rule for the narrow filters in [12] is the identity, 
which does not support the creation of good approximations. 

Another main difference between our approach and the non-separable fil- 
ters used in [30 and [12] is the update rule. For example, we update the 
vertices in a e/’ %subdivision scheme by applying first the three, then the 
two-, and finally the onedimensional update rules. This approach automati- 
cally includes the boundary cases, which are not sufficiently addressed in [30] 
and [12]. Moreover, the generalization to arbitrary dimension n is straight- 
forward. 

3 The *-subdivision scheme 

We first describe the case n = 2. For a fi-subdivision step of a quadrilateral 
Q, we compute its centroid c, and connect c to all four vertices of Q. The 
“old” edges of the mesh are removed (except for the edges determining the 
mesh/domain boundary). Figure 1 illustrates four fi-subdivision steps. 

The mask used for the computation of the centroid c is given in Figure 
2(a). Figure 2(b) shows the mask of the averaging step according to [31]. A 
&&subdivision step is executed by first applying the mask shown in Figure 
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Fig. 1. fisubdivision. 

2(a), which inserts the new vertices, and then (after the topological mesh 
modifications) applying the mask shown in Figure 2(b), which repositions 
the old vertices. 

Fig. 2. Masks of fi-subdivision step: (a) inserting centroid; (b) repositioning old 
vertices. 

This subdivision scheme for quadrilaterals is analogous to the &subdivision 
scheme of Kobbelt [lo] for triangles. Therefore, we call it 4 subdivision. 

We now generalize the subdivision scheme to i /z  subdivision for arbitrary 
dimension n. The splitting step is executed by inserting the centroid and 
adjusting vertex connectivity. The averaging step applies to every old vertex 
v the update rule 

where w is the centroid of the adjacent new vertices. 
We are especially interested in the case n = 3. Little research has been 

done to date concerning three-dimensional (volumetric) subdivision. One ex- 
ample is the work described in [15]. The fi-subdivision scheme in this gen- 
eral setting is discussed in [20]. The literature currently provides no analysis 
of averaging steps for dimensions larger than two. Thus, at present, we cannot 
provide a solution for the choice of a used in the update rule. 

However, when applying the @subdivision scheme to large volumetric 
data sets, we usually deal with structured-rectilinear grids, especially when 
considering imaging data sets. For structured-rectilinear grids, the update 
rule does not change the position of the vertices regardless of the specific a 
value, but it only affects the values at the vertices. In Section 6, we show 
that the 4-subdivision wavelets are not appropriate for our purposes, and 
we replace them by B-spline wavelets. Thus, we do not need to choose a value 
for a. 

v=av+(l-a)w, 
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In Figure 3, three *subdivision steps are shown. In each step, the cen- 
troids of the polyhedral shapes are inserted, and the connectivity is adjusted. 
Three kinds of polyhedral shapes arise. They are shown in Figure 4. 

Fig. 3. fisubdivision. 

Fig. 4. Polyhedral shapes created by fl subdivision: octahedron, octahedron with 
split faces, and cuboid. 

In the first step, each cuboid (first picture of Figure 3 / third picture 
of Figure 4) is subdivided by inserting the cuboid’s centroid and connecting 
the centroid to all old vertices (second picture of Figure 3). In the second 
step, each octahedron (fist picture of Figure 4) is subdivided by inserting 
the octahedron’s centroid and connecting the centroid to all old vertices, 
while all old edges, except the edges inserted in the last subdivision step, are 
deleted (third picture of Figure 3). In the third step, each octahedron with 
split faces (second picture of Figure 4) is subdivided by inserting its centroid 
and connecting the centroid to all old vertices, except the vertices inserted 
in the next-tethe-last subdivision step (A), while all old edges, except the 
edges between the vertices inserted in the next-to-the-last subdivision step 
(A) and the vertices inserted in the last step (A) ,  are deleted (fourth picture 
of Figure 3). 

The three subdivision steps can also be described in the following way: 
The first step inserts the centroid of the cuboid, the second step inserts the 
centers of the faces of the original cuboid, and the third step inserts the 
midpoints of the edges of the original cuboid. Three fi-subdivision steps 
produce the same result as one octree refinement step. Hence, for multir- 
lution purposes, we obtain a much h e r  granularity through f i  subdivision. 
We can thus approximate much more closely a required level of mesh-element 
size. Therefore, it is liiely that one must render much less data to obtain a 
desired image / visualization quality. 
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In this section, we review and define masks for the onedimensional lifting 
scheme of [2] and generalize them to the two- and three-dimensional cases. In 
the following sections, we will adjust the two-dimensional liftiig scheme to 
f i  subdivision and the three-dimensional liiing scheme to f l  subdivision. 

The onedimensional B-spline wavelet lifting scheme makes use of two 
operations that are defined by the following two masks, called s-lift and w- 
lift: 

s-lift(u,b) : ( u  b u )  , 
w-lift(u,b) : ( u  b u )  . 

The s-lii mask is applied to the old vertices o and their new neighbors 0 ,  

whereas the w-lift mask is applied to the new vertices 0 and their neighbors 
0 ,  see Figure 5(a). For a detailed derivation of the liiing scheme that we use 
as a basis for this paper, as well as for its analysis (smoothness, stability, 
approximation order, and zero moments), we refer to [l]. 

Fig. 5. Refinement step for one, two-, and three-dimensional meshes. 

Using the s-lift and w-lift masks, a h e a r  B-spline wavelet encoding step 
is defined by sequentially executing the two operations 

w-lift( - 3,l)  and 
s-lift(f,l) . 

A linear B-spline wavelet decoding step is defined by sequentially executing 
the two operations 

~ l i f t ( - f , l )  and 
w-lift(4,l) . 

Figure 6 illustrates the one-dimensional lifting scheme. 
When applying twedimensional B-spline wavelets to a quadtree-organized 

set of vertices, two kinds of new vertices are obtained when executing a r e  
finement step, namely the new vertices inserted at the midpoints 0 of old 
edges and the new vertices inserted at the centers A of old faces, see Figure 
5(b). Therefore, we have two Merent masks. We derive the needed two- 
dimensional masks by convolution of the onedimensional masks in the two 
coordinate directions. This leads to: 
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encoding decoding 

Fig. 6. One-dimensional linear %spline wavelet liiing scheme. 

a2 ab a’ 
s-lii(u,b): abb2ab , ( a b a ) ,  ( a’ ab a’) 

(3) 

(4) 

The onedimensional masks defined by (3) and (4) are applied in both direc- 
tions. The masks in (3) as well as the masks in (4) are applied simultaneously. 

When applying threedimensional B-spline wavelets to an octreeorganized 
set of vertices, three kinds of new vertices are obtained when executing a r e  
hement step, namely the new vertices inserted at the midpoints of old 
edges, the new vertices inserted at the centers A of old faces, and the new 
vertices inserted at the centroids A of old cubes, see Figure 5(c). Therefore, 
we have three Merent masks. For threedimensional masks, we show the 
structure of the mask and separately define the d u e s  for the vertices 0 ,  0 ,  

A, and A. We derive the needed three-dimensional masks by convolution of 
the one-dimensional masks in all three coordinate directions. The s-lift(u, b) 
masks are defined by this depiction: 

o b’ 

& a  

The w-lift(a, b) masks are defined by this depiction: 

A ab2 
A b‘ 

5 A lifting scheme for subdivision 

( 5 )  

Using f i  subdivision instead of a quadtree-based scheme, we only obtain 
new vertices at the centers A of old faces when executing a subdivision step; 
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at the midpoints of old edges, no vertices are inserted, see second picture 
in Figure 1 and compare to Figure 5(b). Thus, no data is available at the 
positions of the vertices 0 ,  and we must adjust the two-dimensional masks in 

For encoding with linear B-spline wavelets, the w-lift operation is ex+ 
cuted first. Since we have no values at the positions 0 required for mask (4), 
we linearly interpolate the values at the vertices 0. Linear interpolation is 
appropriate, since we are using linear wavelets. This approach changes mask 

(3) and (4). 

(4) to 

Next, the 5lift operation is executed. Again, we have entries at the positions 0 

in mask (3). However, the w-lift operation has (theoretically) executed mask 
(4), and we assumed that the values at the vertices were linear interpola- 
tions of the values at the vertices 0;  therefore, the values at the vertices 0 

have vanished. Mask (3) changes to 

For decoding, we first execute the s-lii operation. Prior to executing the 
s-lift operation of the encoding, the values at the vertices have vanished, 
but the s-lift operation (theoretically) executed mask (3). Hence, the values 
at the vertices 0 are now given by linear interpolation of the values at the 
neighbor vertices A multiplied by the factor 2u of mask (3). We rename the 
factor u to Z and derive from mask (3) the new mask 

a2 + 2 a b  a2 + 2Zab ( a2 + 2Wb b2 a2 + 2iZab 
%liftdecode (a, b) : 

Finally, the w-lift operation is executed again. The s-lift decoding operation 
has (theoretically) applied mask (3). Since mask (3) applied by the s-lift 
decoding operation is the inverse of mask (3) applied by the s-lift encoding 
operation, the values at the vertices are the same as before the execution 
of these two s-lift operations, i. e., they vanish. These considerations define a 
new mask derived from mask (4), given by 

In the two-dimensional case, the masks are as narrow as they can be. 
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6 Results for the 2D case 

In Figure 7, we provide an example for f i  subdivision and two-dimensional 
wavelets. The original surface shown in Figure 7(a) results from sampling a 
two-dimensional Gaussian function at 642 vertices. The surface is encoded 
and decoded again. In Figure 7(b), we show a coarse level of detail obtained 
by .\/2-subdivision wavelets. In Figure 7(c), we show the same level of detail 
obtained when combining bilinear B-spline wavelets and .\/2 subdivision in 
the way described in the previous section. 

Fig. 7. (a) @-subdivision surfaces; (b) encoded and decoded by @-subdivision 
wavelets; and (c) bilinear B-spline wavelets. 

In Figure 7(b), the over- and undershoots caused by the &subdivision 
wavelets can be recognized. No over- and undershoots are visible when com- 
bining fi subdivision with linear B-spline wavelets, see Figure 7(c). 

We also have developed a lifting scheme for cubic B-spline wavelets, but 
the masks are not as narrow as in the linear case, three instead of two lift- 
ing steps are required, see [2], and, most importantly, over- and undershoots 
appear again. Since linear B-spline wavelets, contrary to cubic ones, have in- 
terpolating scaling functions, interpolating refinement filters are guaranteed, 
see [12], i. e., no over- and undershoots can appear. 

For progressive visualization, e. g. when generating images progressively 
by loading data from slow external memory or via Internet, the storage of 
values can be reorganized as shown in Figure 8. Progressive visualization 
starts by using the upper left block in the right picture, then adding the 
upper right block, and, finally, adding the lower block. Reordering ensures 
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that data can be read in a continuous stream without reading data multiple 
times. 

visualization - U 
Fig. 8. Reordering data for progressive visualization. 

7 A lifting scheme for @ subdivision 

In this section, we generalize the ideas of Section 5 to the three-dimensional 
case. Recalling the steps of a @-subdivision scheme depicted in Figure 3, 
after the execution of the Merent steps different kinds of polyhedral shapes 
arise, see Figure 4. Therefore, we have to distinguish between the different 
steps. The following description starts with the situation shown in the second 
picture of Figure 3 (volume case), proceeds with the situation shown in the 
third picture of Figure 3 (face case), and finally treats the situation shown in 
the fourth picture of Figure 3 (edge case), which is topologically equivalent 
to the situation shown in the first picture of Figure 3. 
The volume case. To perform linear B-spline wavelet encoding in the sit- 
uation shown in the second picture of Figure 3, we first execute a w-lift 
operation. Therefore, we apply masks being similar to masks in (6), subject 
to the constraint that no values are available at the vertices 0 and A. 

Regarding the structures of masks (6), we assume that the value at a 
vertex 0 is d&ed by linear interpolation of the values at the two vertices o 
(with which the vertex shares an edge), and that the value at a vertex A 
is defined by bilinear interpolation of the values at the four vertices o (with 
which the vertex A shares a face). One obtains the mask ~-lift,,,,~~(a, a), 
depicted as 

The masks being analogous to the t w e  and one-i-aensional masks in (6)  
are only "applied theoretically." However, since the values at the vertices 0 

are assumed to be linear interpolations of the values at the vertices 0 ,  and 
since the values at the vertices A are assumed to be bilinear interpolations 
of the values at the vertices 0 ,  the values at the vertices 0 and A vanish. 
Therefore, the mask for the next s-lift operation, which is an analogue of the 
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three-dimensional mask in (5), reduces to the mask S-liftencode(a, b), depicted 
as 

Again, the analogous versions of the two- and one-dimensional masks in (5) 
are only applied theoretically. 

For the decoding step, we start with the s-lii operation, i.e., we adjust 
mask (5).  Having (theoretically) applied the two- and onedimensional masks 
in (5) with vanishing values at the vertices and A, the values at the vertices 
A are linear interpolations of the values at the neighbor vertices A, multiplied 
by the factor 2a, and the values at the vertices 0 are bilinear interpolations 
of the values at the neighbor vertices A, multiplied by the factor 4a2. BY 
renaming the factor a to si, we obtain themask &liftdecide(a, b), depicted as- 

0 b3 
A a3+ 3iia%+ 3ii2abL 

Again, the analogous versions of the two- and one-dimensional masks in (5 )  
are only applied theoretically. Since the masks ( 5 )  of this s-lift operation 
are the inverse masks of the masks (5 )  of the encoding s-lift operation, the 
vertices 0 and A have their former values assigned again, i.e., the values 
vanish. Hence, the mask for the final w-lii operation, which is the mask 
being analogous to the three-dimensional mask in (6), reduces to the mask 

In the three-dimensional use, the masks are as narrow as they can be. 
The face case. When applying linear B-spline wavelet encoding to the situ- 
ation depicted in the third picture of Figure 3, we have to make sure that we 
do not violate the assumptions made for the volume case. We assume that 
the values at the vertices A are bilinear interpolations of the values at the 
neighbor vertices 0. Thus, when the values at the vertices A are available, 
their values should be computed only from the values at the vertices 0. This 
insight leaves us with the two-dimensional case, and we can apply masks (7) 
- (10) of Section 5. 
The edge case. When applying linear B-spline wavelet encoding to the 
situation illustrated in the fourth picture of Figure 3, we must not violate 
the assumption that the values at the vertices 0 are linear interpolations 
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of the values at the neighbor vertices 0. When the values at the vertices 
are available, their values should be computed only from the values at the 
vertices 0. This insight leaves us with the one-dimensional case, and we can 
apply masks (1) and (2) of Section 4. 

It is a significant advantage of our scheme that the face and edge cases 
cover naturally boundary faces and boundary edges of the domain. 

8 Results for the 3D case 

In this section, we compare the results obtained by applying a fi-subdivision 
multiresolution scheme with and without trilinear B-spline wavelet encoding. 
Since we want to show how our wavelets improve image quality at a low 
resolution, all examples are provided at a coarse level of detail. 

&-..- 

Fig. 9. Comparing fi-subdivision hierarchy without (a) and with (b) trilinear B- 
spline wavelets. Shown is the same hurface  extracted from the level of detail with 
downsampling ratios 2'. (Data set courtesy of S. Roettger, Abteilung Visualisierung 
und Interalrtive Systeme, University of Stuttgart, Gennany) 

The data set used in Figure 9 is a 256s uniform rectilinear grid, and at 
every vertex one scalar d u e  between 0 and 255 is given. The data set repre- 
sents a "bonsai tree solid." It was obtained by computer tomography. For the 
visualization of the bonsai tree, we extracted and rendered the hur tace  cor- 
responding to the value 80, which was generated by the marching-tetrahedra 
algorithm described in [9]. All the polyhedral shapes in Figure 4 have a 
unique subdivision into tetrahedra according to the longest-edge bisection 
refinement. Thus, all visualization methods based on tetrahedra, including 
the more sophisticated isosurfaceextraction methods in [6,21], could be ap- 
plied. 
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Figure 9(a) shows the isosurface extracted from a coarse level of detail of a 
fisubdivision hierarchy without using wavelets. Figure 9(b) shows the same 
isosurface extracted from the same level of detail, where a -subdivision 
hierarchy WBS combmed with the trilinear Sspline wavelet scheme d d b e d  
in the previous section. The resolution is not high enough to represent the 
h e s t  details, like branches and twigs, but the averaging steps of a wavelet 
encoding clearly leads to better approximations. 

To quantify the improvement in approximation quality, we computed an 
approximation error for each coarser level of approximation by comparing it 
to the original, highest resolution level. Given the original function F dis- 
cretely by sample values at locations xi, i E [l, nJ1, n,][l, nz], we used the 
root-mean-square error 

where f(xi) denotes the approximated function value obtained by trilin- 
ear interpolation applied to a “cell” in the coarser level of resolution: If 
f is de6ned at corner locations YJ = (g~,~ ,g j ,~ ,g j ,~ ) ,  and if xi is inside 
the in- b~,=, ~ ~ + r , , z ) [ Y i , v ,  I I J + . . ~ ~ J , ~ ,  Y J + . ~  the a~~roJc imted  func- 
tion value f(xi) results from trilinear interpolation of the eight corner valuea 

a b l e  1 lists the root-mean-square errors of the shown examples at various 
levels of resolution. We scaled the root-mean-square error to the interval 
[0,1]. The “downsampliig ratio” (dr) is defined as the original number of 
vertices divided by the number of vertices at the used coarser resolution. For 
all examples and all resolutions, we obtained smaller root-mean-square errors 
when using trilinear B-spline wavelets. The last row of the table quantifies the 
“improvement” by listing the average error reduction for each downsampling 
ratio. We recognize that the improvement increases for coarser resolutions. 

f(YJ),***,f(Yj+l)- 

a b l e  1. Root-mean-square mors for three examples at difkrent levels of resolution 
without (w/o) and with (w/) trilinear Bspline wadeta. 

Figure 10 s h m  a biomedical example. The data set represents a human 
brain. It is given as 753 slices, and each slice has a resolution of 1050 x 970 
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points, where 24bit RGB-color information is stored. The original data set 
was preprocessed with a segmentation algorithm described in [29] to eliminate 
noise. We applied the wavelet scheme to each color channel independently 
and, after conversion, used the value V of the HSV color model for isosurface 
extraction. 

S i ce  the data was too large to be stored in main memory, we used out- 
of-core techniques. Due to the narrow masks of our liftiig scheme, at most 
three slices were used simultaneously. 

Fig. 10. (a) Slice through threedimensional brain data set at full resolution; (b) 
slice at level of detail with downaampling ratio 2' without and (c) with B-spline 
wavelets on a fi-subdivision scheme. (Data set courtesy of A. Toga, Ahmanson- 
Lovelace Brain Mapping Center, University of California, Los Angeles) 

For Figure 10, we used an interactive progressive slicing visualization 
tool, see [22], to generate an arbitrary cutting plane through the brain data 
set. Figure lO(a) shows the slice at the highest resolution, Figure 10(b) af- 
ter downsampling with f i  subdivision (downsampling ratio Zg), and Figure 
1O(c) after downsampling with f i  subdivision (downsampling ratio 26) and 
trilinear B-spline wavelets. 

Compared to Figure lO(b), the contours of the brain in Figure 1O(c) are 
much smoother. Moreover, the slice in Figure 1O(c) does not only contain 
information of the slice in Figure lO(a) but also of the full-resolution slices 
next to it. Without the wavelet averaging, some detailed information of the 
neighbored slices might get lost. 

Figure 11 shows an isosurtaCe for the value 78 extracted from the same 
data set at the level of detail with downsampling ratio 2g. For Figure ll(a), 
we used a @subdivision hierarchy without using wavelets, and, for Fig- 
ure ll(b), we combined the @subdivision hierarchy with triliiear Bspline 
wavelets. Figure ll(b) exhibits much more detail information than Figure 
ll(a). 

In Figure 12, we applied our techniques to numerically simulated hydre 
dynamics data. The data set is the result of a three-dimensional simulation of 
the Richtmyer-Meshkov instability and turbulent mixing in a shock tube ex- 
periment, see [18]. For each vertex of a 10243 structured-rectilinear grid (one 
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Fig. 11. Hierarchical viediation of brain data set, (a) based on fi-subdivision 
without and (b) with Bspline wavelets. (Data set courtesy of A. Toga, Ahmanson- 
Lovelace Brain Mapping Center, Univereity of California, Los Angel-) 

time step considered only), an entropy value between 0 and 255 is stored. 
The figure shows the isosurface corresponding to the value 225 extracted 
from three different levels of resolution of one time step. Again, we compared 
the results of the -subdivision hierarchy without (left column) and with 
(right column) trilinear Bspline wavelets, partially computed out-of-core. 

I 

E%. 12. Entropy in a three-dimensional simulation of Richtmyer-Meshkov inSta- 
bility, visualized by isosurface extraction from a fi-subdivision hierarchy without 
(left dumn) and with (right column) Bspline wavelets (downsampling ratio6 216 
and 2*). 
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Considering the example shown in Figure 12, when using the wavelet a p  
proach low-resolution visualizations suffice to understand where the turbulent 
mixing takes place. For example, Figure 12(c) shows clearly the big “bubble” 
rising in the middle of the data set. The bubble can hardly be seen in Figure 
12(a). 

9 Conclusions 

We have introduced i / z  subdivision combined with n-variate B-spline wavelets 
for n-dimensional multiresolution data representation. Visualization of biomed- 
ical imaging data and numerically simulated hydrodynamics data, for exam- 
ple, require efficient methods of isosurface extraction. For this purpose, a 
three-dimensional multiresolution framework is desirable. We first have es- 
tablished a bivariate B-spline wavelet scheme for f i  subdivision and have 
generalized it to a trivariate B-spline wavelet scheme for subdivision. 
The provided examples document the value of our approach for surface and 
volume modelin and visualization. 

By using 2 2 subdivision, instead of using quad- or octrees, a multireso- 
lution hierarchy can be generated that provides much more levels of detail, 
since, in each subdivision step, the number of vertices is only doubled in- 
stead of multiplied by a factor of four or eight, respectively. In the context 
of viewdependent and adaptive refinement and visualization, this charac- 
teristic supports a higher level of adaptivity. Furthermore, i / z  subdivision 
does not only work for structured-rectilinear grids, but also for more gen- 
eral structured-curvilinear grids, and even for arbitrary grids, i. e., grids with 
extraordinary vertices. 

By integrating a wavelet scheme into the subdivision approach, we obtain, 
in general, much better approximations on each level of detail. We have chosen 
n-variate B-spline wavelets and have developed lifting schemes for n = 2 and 
n = 3, which use narrow masks. These narrow masks allow us to u t i l i  the 
wavelet scheme for view-dependent , adaptive multiresolution visualization of 
large-de data. 

The wavelet encoding only reorganizes data and does not require addi- 
tional memory. The $%subdivision scheme also does not require us to store 
additional connectivity information. Thus, our approach, as a whole, requires 
no additional storage. 

Since the masks of our lifting scheme are of constant size and the number 
of iterations for our liiing scheme is constant, our algorithms run in linear 
time with respect to the number of original data. Since the masks are nar- 
row and only two iterations are needed, the run-time constants are small. 
Considering the examples shown, we conclude that our approach provides a 
valuable tool for the interactive exploration of volumetric data at multiple 
level of resolution. 
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